珀金埃尔默网站上的Cookie
珀金埃尔默使用cookies来确保我们为您提供在我们网站上的最佳体验。 这可能包括来自第三方网站的cookies。 如果您不改变您的设置点击继续,我们会认为您同意接收本网站的cookies。 您可以随时更改您的Cookie设置。 要了解更多信息,请查看我们的Cookie政策,其中包含有关如何管理Cookie的信息。

Cell Cycle

Cell cycle assays are applied in early toxicity testing and in screening for anti-cancer agents. One of the most important aspects in anti-cancer treatments is the inhibition of cell proliferation and cell division.

BCell cycle assays are applied in early toxicity testing and in screening for anti-cancer agents. One of the most important aspects in anti-cancer treatments is the inhibition of cell proliferation and cell division.

Both events can be analyzed using High Content Screening (HCS) approaches by multiplexing cell cycle-specific cellular events. Examples are BrdU or EdU staining, which detect the S-phase of the cell cycle by incorporating the nucleoside analog Uridine into newly synthesized DNA strands.

There are also well validated protein markers that are associated with certain cell cycle phases. One example is the phosphorylated histone H3 (pHH3), which is a common M-phase marker. DNA histogramming is another basic analysis tool which transfers very well to image based automated analysis of DNA content per cell.

High Content Screening can quantify all the cell cycle analysis readout parameters which are used in flow cytometry, the traditional tool for cell cycle analysis. Cell cycle analysis relies greatly on statistics over a large number of cells so to get reliable data it is essential to acquire multiple image fields per sample combining data from several thousand cells. A large number of cells must be analyzed in a short period of time in order to achieve an acceptable screen throughput.

Cell cycle assay
The figure above shows a schematic representation of the cell cycle phases, incorporation of EdU and pHH3 detection. The cells have been stained with a nuclear marker (blue), an antibody for EdU (green) and an antibody for pHH3 (red) in various stages of the cell cycle.

Both events can be analyzed using High Content Screening (HCS) approaches by multiplexing cell cycle-specific cellular events. Examples are BrdU or EdU staining, which detect the S-phase of the cell cycle by incorporating the nucleoside analog Uridine into newly synthesized DNA strands.

There are also well validated protein markers that are associated with certain cell cycle phases. One example is the phosphorylated histone H3 (pHH3), which is a common M-phase marker. DNA histogramming is another basic analysis tool which transfers very well to image based automated analysis of DNA content per cell.

High Content Screening can quantify all the cell cycle analysis readout parameters which are used in flow cytometry, the traditional tool for cell cycle analysis. Cell cycle analysis relies greatly on statistics over a large number of cells so to get reliable data it is essential to acquire multiple image fields per sample combining data from several thousand cells. A large number of cells must be analyzed in a short period of time in order to achieve an acceptable screen throughput.

For Research Use Only. Not for Use in Diagnostic Procedures.